

World Journal of Pharmacy and Biotechnology

Home Page: https://pharmaresearchlibrary.org/journals/index.php/wjpbt

e-ISSN: 2349-9087 | Publisher: Pharma Research Library

W. J. Pharm. Biotech., 2025, 12(1): 35-40 DOI: https://doi.org/10.30904/j.wjpbt.2025.4824

A Study on Screening of Risk Factors Profile for Respiratory Infections in Pediatrics and Its Treatment Pattern in a Tertiary Care Hospital

Gudur Rajeswari*¹, MD.Zaiba Tasleem², M.Venkatapooja Bai², M.Supraja², N. Praveen Kumar Reddy², N.Nagalakshmi²

¹Professor & HOD, Department of Pharmacology, Saastra College of Pharmaceutical Education & Research, Varigonda, Nellore, Andhra Pradesh ²Pharm.D 5th Year, Saastra College of Pharmaceutical Education & Research, Varigonda, Nellore, Andhra Pradesh

ABSTRACT

Microorganisms gain entry to the respiratory tract by inhalation of droplets and invade the mucosa. Epithelial destruction may ensue, along with redness, edema, hemorrhage and sometimes an exudate. Initial symptoms of a cold are runny, stuffy nose and sneezing, usually without fever. Other upper respiratory infections may have fever. Children with epiglottitis may have difficulty in breathing, muffled speech, drooling and stridor. Children with serious laryngotracheitis (croup) may also have tachypnea, stridor and cyanosis. The prospective observational study was carried out for a period of 6 months. The study was conducted in Pediatrics department in a tertiary care hospital. The present study aimed to assess screening of risk factors profile for respiratory infections in pediatrics and its treatment pattern in a tertiary care hospital. Difficulty breathing clinical symptom patients were more 28(22.4%) as compared to other clinical symptoms 88-91. Private Medical Practitioner visited patients were more 51 (40.8%) as compared to other treatment centers. Tablet dosage form prescribed patients were more 93 (74.4%), as compared to syrup dosage form prescribed patients 32 (25.6%). Corticosteroids prescribed patients were more 45 (36%) as compared to other prescribed drugs for Respiratory infections. Study clearly highlighted the various types of clinical presentations, risk factors and different types of LRTI in children less than 5 years of age. Understanding a clear knowledge of the etiology and bacterial pathogens clearly provides guidance for the physician in management and clinical outcome. From the result of this study, we can conclude that there are some modifiable risk factors for LRTI like family history, past history, immunization status, and malnutrition. The risk factors can be tackled through effective health education of community, leading to a healthy society.

Keywords: Microorganisms, upper, lower respiratory infections, bacterial pathogens, immunization status and treatment

ARTICLE INFO

*Corresponding Author:

Dr. Gudur Rajeswari

Professor & HOD, Department of Pharmacology

Saastra College of Pharmaceutical Education & Research

Varigonda, SPSR Nellore, A.P, India.

e-mail: rajeswarim.pharm6@gmail.com

Article History:

Received 27 Mar 2025

Revised 10 April 2025

Accepted 02 May 2025

Published 16 June 2025

Copyright© **2025** The Contribution will be made Open Access under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0) which permits use, distribution and reproduction in any medium, provided that the Contribution is properly cited and is not used for commercial purposes.

Citation: Gudur Rajeswari *et al*, A Study on Screening of Risk Factors Profile for Respiratory Infections in Pediatrics and Its Treatment Pattern in a Tertiary Care Hospital, 2025, 12(1): 35-40.

CONTENTS

O 11.	LIVID	
1.	Introduction.	. 35
2.	Materials and Methods.	36
3.	Results and Discussion	36
4.	Conclusion	39
	References	

1. Introduction

Upper Respiratory Infections: Common Cold, Sinusitis, Pharyngitis, Epiglottitis and Laryngotracheitis.

Etiology: Most upper respiratory infections are of viral etiology. Epiglottitis and laryngotracheitis are exceptions

with severe cases likely caused by Haemophilus influenzae type b. Bacterial pharyngitis is often caused by Streptococcus pyogenes.

Pathogenesis: Organisms gain entry to the respiratory tract by inhalation of droplets and invade the mucosa. Epithelial

destruction may ensue, along with redness, edema, hemorrhage and sometimes an exudate.

Clinical Manifestations:

Initial symptoms of a cold are runny, stuffy nose and sneezing, usually without fever. Other upper respiratory infections may have fever. Children with epiglottitis may have difficulty in breathing, muffled speech, drooling and stridor. Children with serious laryngotracheitis (croup) may also have tachypnea, stridor and cyanosis.

Microbiologic Diagnosis: Common colds can usually be recognized clinically. Bacterial and viral cultures of throat swab specimens are used for pharyngitis, epiglottitis and laryngotracheitis. Blood cultures are also obtained in cases of epiglottitis¹⁻¹⁵. Prevention and Treatment: Viral infections are treated symptomatically. Streptococcal pharyngitis and epiglottitis caused by H influenzae are treated with antibacterials. Haemophilus influenzae type b vaccine is commercially available and is now a basic component of childhood immunization program.

Lower Respiratory Infections: Bronchitis, Bronchiolitis and Pneumonia

Etiology: Causative agents of lower respiratory infections are viral or bacterial. Viruses cause most cases of bronchitis and bronchiolitis. In community-acquired pneumonias, the most common bacterial agent is Streptococcus pneumoniae. Atypical pneumonias are cause by such agents as Mycoplasma pneumoniae, Chlamydia spp, Legionella, Coxiella burnetti and viruses. Nosocomial pneumonias and pneumonias in immunosuppressed patients have protean etiology with gram-negative organisms and staphylococci as predominant organisms.

Pathogenesis:

Organisms enter the distal airway by inhalation, aspiration or by hematogenous seeding. The pathogen multiplies in or on the epithelium, causing inflammation, increased mucus secretion, and impaired mucociliary function; other lung functions may also be affected. In severe bronchiolitis, inflammation and necrosis of the epithelium may block small airways leading to airway obstruction. Clinical Manifestations: Symptoms include cough, fever, chest pain, tachypnea and sputum production. Patients with pneumonia may also exhibit non-respiratory symptoms such as confusion, headache, myalgia, abdominal pain, nausea, vomiting and diarrhea.

Microbiologic Diagnosis:

Sputum specimens are cultured for bacteria, fungi and viruses. Culture of nasal washings is usually sufficient in infants with bronchiolitis. Fluorescent staining technic can be used for legionellosis. Blood cultures and/or serologic methods are used for viruses, rickettsiae, fungi and many bacteria. Enzyme-linked immunoassay methods can be used for detections of microbial antigens as well as antibodies. Detection of nucleotide fragments specific for the microbial antigen in question by DNA probe or polymerase chain reaction can offer a rapid diagnosis.

Prevention and Treatment: Symptomatic treatment is used for most viral infections. Bacterial pneumonias are treated with antibacterials. A polysaccharide vaccine against 23 serotypes of Streptococcus pneumonia is recommended for individuals at high risk.

2. Materials and Methods

The prospective observational study was carried out for a period of 6 months. The study was conducted in Pediatrics department in a tertiary care hospital. A written and informed consent was obtained from the recruited patients. A Total of 125 patients were enrolled in the study.

Study Design: It was Prospective observational study.

Study Period: The Present study was conducted for a period of six months.

Study site: The Present study was conducted in Pediatrics department of a tertiary care hospital.

Sample size: It was 125 Patients.

Inclusion criteria

- Patients with respiratory abnormalities.
- Patients of either sex, diagnosed with respiratory abnormalities.
- Patients who are willing to give consent.
- Patients receiving treatment for respiratory abnormalities.
- Patients with clinical profile of respiratory abnormalities.

Exclusion criteria

- Patients below 18 years.
- Patients who were not willing to join in the study.
- Patients who are not diagnosed with respiratory abnormalities.
- Special population including pregnant women and lactating women.
- Psychiatric abnormalities.

Institutional ethics committee (IEC) consideration:

The research protocol was submitted to ethical committee and ethical Committee was permitted to perform the research work in Pediatrics department.

Patient data collection and management:

The data collection form contains information regarding age, sex, BMI, diagnosis, past medical history, laboratory data, and diagnostic results. The information about risk factors, clinical laboratory reports, treatment, dose and frequency of administration and duration of therapy was collected from the patients treatment chart.

Statistical analysis:

The data was represented as percentages. The P<0.05 was considered to indicate a statistically significant difference.

3. Results and Discussion

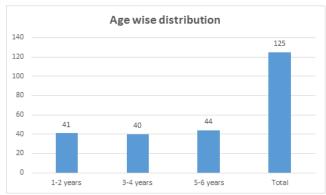


Figure 1: Age wise distribution

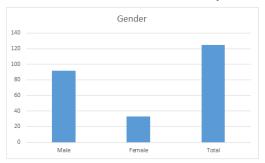


Figure 2: Gender

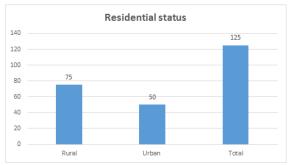


Figure 3: Residential status

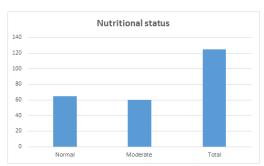


Figure 4: Nutritional status

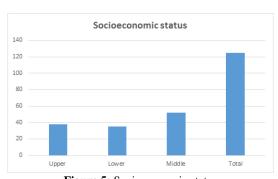
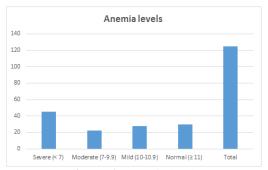



Figure 5: Socioeconomic status

Figure 6: Anemia levels

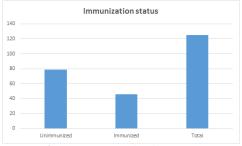


Figure 7: Immunization status

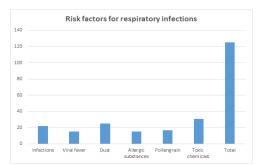


Figure 8: Risk factors for respiratory infections

Discussion

- In our study 5-6 years age patients were more 44 (35.2%) as compared to other age groups.
- In our study male patients were more 92 (73.6 %) as compared to female patients were 33 (26.4%).
- Rural area patients were more 75 (60%) as compared to urban area patients 50 (40%).
- Nutritional status of patients were normal patients were more 65 (52%) as compared to moderate patients 60 (48%).
- Middle socioeconomic patients were more 52 (41.6%) as compared to other socioeconomic status of patients.
- Severe (< 7) anemia patients were more 45 (36 %) as compared to other anemia groups.
- Unimmunized patients were more 79 (63.2%) as compared to Immunized patients 46 (36.8%).
- Toxic chemicals risk factor patients were more 31 (24.8%) as compared to other risk factor patients.
- Frequency of Respiratory infections includes 1-2 episodes patients were more 48(38.4%) as compared to other Frequency of Respiratory infections.
- URTI patients were more 75 (60%) as compared to LRTI patients 50 (40%).
- Difficulty breathing clinical symptom patients were more 28(22.4%) as compared to other clinical symptoms⁸⁶⁻⁹¹.
- Private Medical Practitioner visited patients were more 51 (40.8%) as compared to other treatment centers.
- Tablet dosage form prescribed patients were more 93 (74.4%), as compared to syrup dosage form prescribed patients 32 (25.6%).
- Blood test patients were more 36(28.8%) as compared to other lab test patients

Table 1: Age wise distribution

S.No	Age	Total (N=125)	Percentage
1.	1-2 years	41	32.8
2.	3-4 years	40	32
3.	5-6 years	44	35.2
	Total	125	

Table 2: Gender

S.No	Gender	Total (N=132)	Percentage
1.	Male	92	73.6
2.	Female	33	26.4
	Total	125	

Table 3: Residential status

S.No	Residential status	Total (N=132)	Percentage
1.	Rural	75	60
2.	Urban	50	40
	Total	125	

Table 4: Nutritional status

S.No	Nutritional status	Total (N=132)	Percentage
1.	Normal	65	52
2.	Moderate	60	48
	Total	125	

Table 5: Socioeconomic status

S.No	Socioeconomic status	Total (N=125)	Percentage	
1.	Upper	38	30.4	
2.	Lower	35	28	
3.	Middle	52	41.6	
	Total	125		

Table 6: Anemia levels

S.No	Anemia levels	Total (N=125)	Percentage
1.	Severe (< 7)	45	36
2.	Moderate (7-9.9)	22	17.6
3.	Mild (10-10.9)	28	22.4
4.	Normal (≥ 11)	30	24
	Total	125	

Table 7: Immunization status

S.No	Immunization status	Total (N=125)	Percentage
1.	Unimmunized	79	63.2
2.	Immunized	46	36.8
	Total	125	

Table 8: Risk factors for respiratory infections

S.No	Risk factors	Total (N=125)	Percentage
1.	Infections	22	17.6
2.	Viral fever	15	12
3.	Dust	25	20
4.	Allergic substances	15	12
5.	Pollengrain	17	13.6
6.	Toxic chemicals	31	24.8
	Total	125	

4. Conclusion

The etiologic agent of upper respiratory tract infections varies according to the age group of patients. This must be considered for appropriate laboratory evaluation and clinical management, which must be aligned for a better outcome. Sensibility and specificity of rapid antigen test to detect S. pyogenes showed satisfactory results in the analyzed periods in the study. ARI is the most common illness among hospitalized children under five years of age. Among them, the most common presenting complaints are fever and cough. Stunting, wasting and anemia are common among these children. In our study 5-6 years age patients were more 44 (35.2%) as compared to other age groups ⁹²⁻⁹⁶. URTI patients were more 75 (60%) as compared to LRTI patients 50 (40%). Study clearly highlighted the various types of clinical presentations, risk factors and different types of LRTI in children less than 5 years of age. Understanding a clear knowledge of the etiology and bacterial pathogens clearly provides guidance for the physician in management and clinical outcome. From the result of this study, we can conclude that there are some modifiable risk factors for LRTI like family past history, immunization status, history, The risk factors can be tackled through malnutrition. effective health education of community, leading to a healthy society

5. References

- [1] Gonzales R., Steiner J.F., Sande M.A. Antibiotic prescribing for adults with colds, upper respiratory tract infections, and bronchitis by ambulatory care physicians. J Am Med Assoc. 1997;278:901–904.
- [2] Rodnick J.E., Gude J.K. The use of antibiotics in acute bronchitis and acute exacerbations of chronic bronchitis. West J Med. 1988;149:347–351.
- [3] Fleming D.M., Elliot A.J. The management of acute bronchitis in children. Expert Opin Pharmacother. 2007;8(4):415–426. doi: 1517/14656566.8.4.415.
- [4] Brodzinski H., Ruddy R.M. Review of new and newly discovered respiratory tract viruses in children. Pediatr Emerg Care. 2009;25(5):352–360. doi: 10.1097/PEC.0b013e3181a3497e.
- [5] Smith C.B., Golden C.A., Kanner R.E. Association of viral and Mycoplasma pneumoniae infections with acute respiratory illness in patients with chronic obstructive pulmonary diseases. Am Rev Respir Dis. 1980;121:225–232. doi: 10.1164/arrd.1980.121.2.225.
- [6] Read R.C. Bacterial infections of the respiratory tract. In: Borriello S.P., Murray P.R., Funke G., editors. Topley and Wilson's microbiology and microbial infections. 10th ed. Hodder Arnold; London: 2005. pp. 622–657.
- [7] Ayres J.G. Seasonal pattern of acute bronchitis in general practice in the United Kingdom. Thorax. 1986;41:106–110.doi:10.1136/thx.41.2.106.
- [8] Reynolds H.Y. Chronic bronchitis and acute infectious exacerbations. In: Mandell G.L., Bennett J.E., Dolin R., editors. Mandell, Douglas

- and Bennett's Principles and Practice of Infectious Diseases. 4th ed. Churchill Livingstone; Edinburgh: 1995. p. 608.
- [9] US Bureau of the Census . Statistical Abstract of the United States. 14th ed. US Bureau of the Census; Washington, DC: 1994. p. 95.
- [10] García Rodríguez L.A., Wallander M.A., Tolosa L.B., Johansson S. Chronic obstructive pulmonary disease in UK primary care: incidence and risk factors. COPD. 2009;6(5):369–379. doi: 10.1080/15412550903156325.
- [11] Anthonisen N.R., Manfreda J., Warren C.PW. Antibiotic therapy in exacerbations of chronic obstructive lung disease. Ann Intern Med. 1987;106:196–204. doi: 10.7326/0003-4819-106-2-196.
- [12] Nseir S., Di Pompeo C., Cavestri B. Multiple-drug-resistant bacteria in patients with severe acute exacerbation of chronic obstructive pulmonary disease: prevalence, risk factors, and outcome. Crit Care Med. 2006;34(12):2959–2966. doi: 10.1097/01.CCM.0000245666.28867.C6.
- [13] Soler N., Torres A., Ewig S. Bronchial microbial patterns in severe exacerbations of chronic obstructive pulmonary disease (COPD) requiring mechanical ventilation. Am J Respir Crit Care Med.1998;157:1498–1505.

 doi: 10.1164/ajrccm.157.5.9711044.
- [14] Eller J., Ede A., Schaberg T. Infective exacerbations of chronic bronchitis: relation between bacteriologic etiology and lung function. Chest. 1998;113:1542–1548.

 doi: 10.1378/chest.113.6.1542.
- [15] Miravitlles M., Espinosa C., Fernandez-Laso E. Relationship between bacterial flora in sputum and functional impairment in patients with acute exacerbations of COPD. Chest. 1999;116:40–46. doi: 10.1378/chest.116.1.40.
- [16] Saint S., Vittinghoff E., Grady D. Antibiotics in chronic obstructive pulmonary disease exacerbations. A meta-analysis. J Am Med Assoc. 1995; 273:957–960.
- [17] Ball P., Harris J.M., Lowson D. Acute infective exacerbations of chronic bronchitis. Q J Med. 1995;88:61–68.
- [18] Derenne J.P., Fleury B., Parienta R. Acute respiratory failure of chronic obstructive lung disease. Am Rev Respir Dis. 1998;138:1006–1033. doi: 10.1164/ajrccm/138.4.1006.
- [19] Seneff M.G., Wagner D.P., Wagner R.P. Hospital and 1-year survival of patients admitted to intensive care units with acute exacerbation of chronic obstructive lung disease. J Am Med Assoc. 1999;274:1852–1857.
- [20] Lode H. Respiratory tract infections: when is antibiotic therapy indicated? Clin Ther. 1991; 13: 149–156.
- [21] Balter N.S., Hyland R.H., Low D.E. Recommendations on the management of chronic bronchitis. Can Med Assoc J. 1994;151:7–23.

- [22] National Center for Health Statistics National hospital discharge survey: annual summary 1990. Vital Health Statistics. 1998;13:1–225.
- [23] Niederman M.S., McCombs J.S., Unger A.N. The cost of treating community-acquired pneumonia. Clin Ther. 1998;20:820–837. doi: 10.1016/s0149-2918(98)80144-6.
- [24] 25.Foy H.M., Cooney M.K., Allan I. Rates of pneumonia during influenza epidemics in Seattle, 1964 to 1975. J Am Med Assoc. 1979;241:253–258. [PubMed] [Google Scholar]
- [25] Jokinen C., Heiskanen L., Juvonen H. Incidence of community-acquired pneumonia in the population of four municipalities in eastern Finland. Am J Epidemiol. 1993;137:977–988. doi: 10.1093/oxfordiournals.aie.a116770.
- [26] Koivula I., Sten M., Makela P.H. Risk factors for pneumonia in the elderly. Am J Med. 1994;96:313–320. doi: 10.1016/0002-9343(94)90060-4.
- [27] Sankilampi U., Herva E., Haikala R. Epidemiology of invasive Streptococcus pneumoniae infections in adults in Finland. Epidemiol Infect. 1997;118:7–15. doi: 10.1017/s0950268896007169.
- [28] Nielsen S.V., Henrichsen J. Incidence of invasive pneumococcal disease and distribution of capsular types of pneumococci in Denmark, 1989–94. Epidemiol Infect. 1996;117:411–416. doi: 10.1017/s0950268800059057.
- [29] Bartlett J.G., O'Keefe P., Tally F.P. Bacteriology of hospital-acquired pneumonia. Arch Intern Med. 1986;146:868–871.
- [30] De Roux A., Ewig S., García E. Mixed community-acquired pneumonia in hospitalised patients. Eur Respir J. 2006;27(4):795–800. doi: 10.1183/09031936.06.00058605.
- [31] Moine P., Vercken J-B, Chevret S. Severe community-acquired pneumonia: etiology, epidemiology and prognostic factors. Chest. 1994;105:1487–1495. doi: 10.1378/chest.105.5.1487.
- [32] Fine M.J., Smith M.A., Carson C.A. Prognosis and outcomes of patients with community-acquired pneumonia. J Am Med Assoc. 1996;275:134–141.
- [33] Marston B.J., Plouffe J.F., File T.M. Incidence of community-acquired pneumonia requiring hospitalization. Arch Intern Med. 1997;157:1709–1718.
- [34] Troy C.J., Peeling R.W., Ellis A.G. Chlamydia pneumoniae as a new source of infectious outbreaks in nursing homes. J Am Med Assoc. 1997:277:1214–1218.
- [35] Pachon J., Prados M.D., Capote F. A. Severe community-acquired pneumonia: etiology, prognosis and treatment. Am Rev Respir Dis. 1990;142:369–373.
- [36] Johanson W.G., Jr, Pierce A.K., Sanford J.P., Thomas G.D. Nosocomial respiratory infections with gram-negative bacilli. Ann Intern Med.

- 1972;77:701–706. doi: 10.7326/0003-4819-77-5-701.
- [37] Woodhead M.A., Arrowsmith J., Chamberlain-Webber R. The value of routine microbial investigation in community-acquired pneumonia. Respir Med. 1991;85:313–317.
- [38] Farr B.M., Kaiser D.L., Harrison B.DW. Prediction of microbial aetiology at admission to hospital for pneumonia from the presenting clinical features. Thorax. 1989;44:1031–1035. doi: 10.1136/thx.44.12.1031.