

Asian Journal of Medical and Pharmaceutical Sciences

Home Page: https://pharmaresearchlibrary.org/journals/index.php/ajmps ISSN (Online): 2348-0165 | Publisher: Pharma Research Library

A. J. Med. Pharm, Sci., 2023, 11(1): 61-64 DOI: https://doi.org/10.30904/j.ajmps.2023.4568

Analytical Method Development and Validation for the Simultaneous Estimation of Telmisartan and Carvedilol by RP-HPLC Method

Maka Saroja Rani^{*}, Gope Edward Raju, Kandregula Uma Maheswari, Doonaboyina Raghava, Kavala Nageswara Rao

Department of Pharmaceutical Analysis, K.G.R.L College of Pharmacy, Bhimavaram-534201, Andhra Pradesh, India

ABSTRACT

A simple precise and accurate reverse phase high performance liquid chromatographic technique was developed and validated for the simultaneous estimation of Telmisartan and Carvedilol in a combined dosage form Symmetry Agilent $C18(4.6*150\text{mm})5\mu\text{mcolumn}$ in isocratic mode was used with the mobile phase comprising of Water and Methanol in the ratio of 40:60v/v, the flow rate was set at 1ml/min. The analyte was monitored with dual wavelength UV detector at 255nm. The retention time of Telmisartan and Carvedilol was found to be 2.551 and 4.879 min respectively. The linearity range was found to lie from $10\mu\text{g/ml}$ to $50\mu\text{g/ml}$ of Telmisartan, $20\mu\text{g/ml}$ to $100\mu\text{g/ml}$ of Carvedilol. Percentage recoveries were obtained in the range of for Telmisartan 98.8% and for Carvedilol 98.5%. The proposed method is precise, accurate, selective, reproducible and rapid for the simultaneous estimation of Telmisartan and Carvedilol in combined form.

Keywords: Telmisartan, Carvedilol, UV, HPLC

ARTICLE INFO

Corresponding Author	Article History
Maka Saroja Rani	Received: 18 June 2023
Department of Pharmaceutical Analysis,	Revised : 28 July 2023
K.G.R.L College of Pharmacy,	Accepted: 21 Aug 2023
Bhimavaram-534201, Andhra Pradesh, India	Published: 07 Oct 2023

Copyright© **2023** The Contribution will be made Open Access under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0) which permits use, distribution and reproduction in any medium, provided that the Contribution is properly cited and is not used for commercial purposes.

Citation: Maka Saroja Rani, *et al.* Analytical Method Development and Validation for the Simultaneous Estimation of Telmisartan and Carvedilol by RP-HPLC Method. A. J. Med. Pharm, Sci., 2023; 11(1): 61-64.

CONTENTS

CONTENTS	
1. Introduction	1
2. Methodology	1
3. Results and Discussion	2
4. Conclusion	4
5. References	<u>5</u> 4

1. Introduction

Telmisartan is an angiotensin II receptor antagonist (ARB) used in the management of hypertension. Generally, angiotensin II receptor blockers (ARBs) such as telmisartan bind to the angiotensin II type 1 (AT1) receptors with high affinity, causing inhibition of the action of angiotensin II on vascular smooth muscle, ultimately leading to a reduction in arterial blood pressure. Recent studies suggest that telmisartan may also have PPAR-gamma agonistic properties that could potentially confer beneficial metabolic effects. Carvedilol is a racemic mixture where the S(-) enantiomer is both a beta and alpha-1 adrenoceptor blocker, and the R(+) enantiomer is an alpha-1 adrenoceptor blocker. It is currently used to treat heart failure, left ventricular dysfunction, and hypertension. The dual action of carvedilol is advantageous in combination therapies as

moderate doses of 2 drugs have a decreased incidence of adverse effects compared to high dose monotherapy in the treatment of moderate hypertension.

2. Materials and methods

The instrument used was HPLC Alliance Waters model No. 2695 separation module. 2487UV detector, Software-EMpower. The stationary phase used was XterraC185µm (4.6*250mm) column. Digital weighing balance-Model number BSA224SC, Sonicator (Enertech)-SE60US, pH meter Model number Adwa-AD 1020, UV-VIS spectrophotometer UV3000 Lab India Software-UVWin5.

Materials and reagents

Vinblastine and Vincristine were gift samples supplied by Dr. Reddy's Laboratories Water, Methanol, Acetonitrile,

and Potassium dihydrogen orthophosphate were supplied by Merck

Method development: Five trials were made by changing the mobile phase ratios and solvents Water: Methanol (40:60%v/v) Water: Methanol (40:60%v/v) Phosphate buffer (0.05m) pH5.0:Methanol (50:50%v/v) Phosphate buffer (0.05M) pH4.6:MeOH Phosphatebuffer (0.05M) pH4.6:ACN (30:70%v/v). Finally, the mobile phase optimized was Water and Methanol in the ratio of 40:60v/v.

Chromatographic conditions

The chromatographic conditions were successfully developed for the estimation of Telmisartan and Carvedilol ina combined dosage form Symmetry Agilent C18 (4.6*150mm) $5\mu m$ column in isocratic mode was used with the mobile phase comprising of Water and Methanol in the ratio of 40:60v/v, the flow rate was set at 1ml/min. The analyte was monitored with dual wavelength UV detector at 255nm.

3. Results and Discussion

Table 1 Accuracy results of Carvedilol

%Concentration		Amount	Amount	%	Mean
(at specificationLevel)	Area	added (mg)	found(mg)	Recovey	Recovery
50%	2332744	5	5.10	101.8%	100.5%
100% 150%	3132697 3918997	10 15	9.99 14.9	99.9% 99.1%	

Table 2 Accuracy results of Telmisartan

% Concentration (at specification level)	Area	Amount Added(mg)	Amount Found(mg)	%Recovery	Mean Recovery
50%	353867	5	5.0	101.3%	
100%	4735088	10	9.94	99.4%	100.0%
150%	5911798	15	14.8	99.2%	

Table 7: Specificity results

					USP	USP	USP
S No	Peakname Telmisartan	Rt 2.237	Area 7913799	Height 394185	Plate count 2632	Tailin 1.8	Resolution
2	Carvedilol	4.342	1853381	162758	2614	1.6	5.23

Table 8: Linearity results of Telmisartan

Table 6. Emeanty results of Temmsartan						
Linearity Level	Concentration	Area				
I	20 ppm	892464				
II	40 ppm	1904884				
III	60 ppm	2906620				
IV	80 ppm	3800672				
V	100 ppm	4738193				
Correlation Coeffici	ent	0.99932				
	Linearity Level I II III IV V	Linearity Level Concentration I 20 ppm II 40 ppm III 60 ppm IV 80 ppm				

Table 9: Linearity results of Carvedilol

S.No	Linearity Level	Concentration	Area
1	Ι	10 ppm	907953
2	II	20 ppm	1730043
3	III	30 ppm	2553693
4	IV	40 ppm	3283876
5	V	50 ppm	4144232
	Correlation Coeffici	ient	0.99916

Table 3: Repeatability results of Telmisartan

Name:telmisartan					
	Name	RT	Area	Height (µV)	
1	telmisartan	2.321	2235319	196999	
2	telmisartan	2.317	2240678	198254	
3	telmisartan	2.323	2249490	195128	
4	telmisartan	2.322	2245822	196164	
5	telmisartan	2.324	2251694	195887	
Mean			2244601		
Std. Dev.			6656.8		
% RSD			0.30		

Table 4 Repeatability results of Carvedilol

Name: Carvedilol					
	Name	RT	Area	Height (µV)	
1	Carvedilol	4.304	1501417	100275	
2	Carvedilol	4.300	1486940	100079	
3	Carvedilol	4.308	1490656	98257	
4	Carvedilol	4.310	1487329	98165	
5	Carvedilol	4.314	1490384	98153	
Mean			1491345		
Std. Dev.			5881.4		
% RSD			0.39		

Table 6: Ruggedness results of Telmisartan

	Name: Telmisartan					
	Name	RT	Area	Height (µV)		
1	Telmisartan	2.328	2194758	189693		
2	Telmisartan	2.326	2195700	190025		
3	Telmisartan	2.327	2196191	189862		
4	Telmisartan	2.326	2195326	190700		
5	Telmisartan	2.331	2200951	189426		
Mean			2196585			
Std. Dev.			2496.0			
% RSD			0.11			

Table 6: Ruggedness results of carvedilol

	Name: Carvedilol					
	Name	RT	Area	Height (µV)		
1	Carvedilol	4.335	1456296	95623		
2	Carvedilol	4.336	1457422	95150		
3	Carvedilol	4.334	1456513	95165		
4	Carvedilol	4.337	1454579	95298		
5	Carvedilol	4.340	1451483	95251		
Mean			1455259			
Std. Dev.			2347.6			
% RSD			0.16			

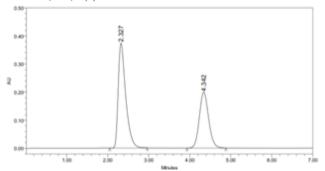


Figure 1: Chromatogram of Standard Injection

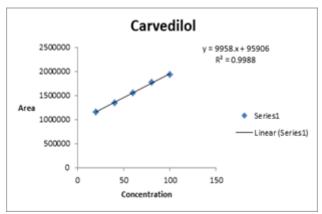


Figure 2 Calibration curve of Carvedilol

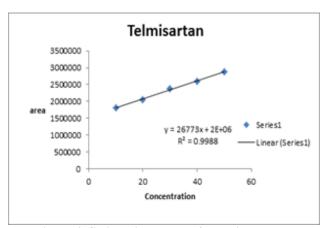


Figure 3 Calibration curve of Telmisartan

Table 10: System suitability results For Carvedilol (Flow rate)

S.No	FlowRate(ml/min)	Systemsuitabilityresults		
		USPPlatecount	USPTailing	
1	0.8	1748.5	1.22	
2	1.0	1548.2	1.2	
3	1.2	1948.0	1.2	

Table 11 System suitability results for Telmisartan (Flow rate)

		Systemsuitabilityresults	
S.No	FlowRate(ml/min)	USPPlatecount	USPTailing
1	0.8	883.3	1.56
2	1.0	1234.0	1.1
3	1.2	969.2	1.6

Table 12: System suitability results for Carvedilol (Mobile phase)

C N.	ChangeinOrganic Compositionin the	Systemsuitabilityresults	
S.No	MobilePhase	USPPlatecount	USPTailin
1	10%Less	1748.5	1.22
2	Actual	1548.2	1.2
3	10%More	1948.0	1.2

Table 13: System suitability result for Telmisartan (Mobile phase)

G.N.	ChangeinOrganic Compositionin the	Systemsuitabilityresults	
S.No	MobilePhase	USPPlatecount	USPTailin
1	10%Less	883.3	1.56
2	Actual	1234.0	1.1
3	10%More	969.2	1.6

4. Conclusion

A new method was established for simultaneous estimation of Telmisartan and Carvedilol by RP-HPLC The chromatographic conditions successfully developed for the separation of Telmisartan and Carvedilol by using XterraC185µm (4.6*250mm) column, flowrate was 1 ml/min, mobilephase ratio was Phosphatebuffer (0.05M) pH4.6: ACN (55:45% v/v) (pHwas adjusted with orthophosphoricacid), detection wavelength was 260nm. The instrument used was WATERS HPLC Auto Sampler, Separation module 2695, PDA Detector 996, Empower-softwareversion-2. The retention times were found to be 2.399mins and 3.907 mins. The % purity of Telmisartan and Carvedilol was found to be 100.7 % and 101.4 % respectively. The system suitability parameters for Telmisartan and Carvedilol such as theoreticalplates and tailing factor were found to be 1.3, 5117.5 and 1.4,3877.3 the resolution was found to be 8.0. The analytical method was validated according to ICH guidelines (ICH,Q2(R1)). The linearity study for Telmisartan and Carvedilol was found inconcentration range of 1µg-5µg and 100µg-500µg and correlation coefficient (r2) was found to be 0.999and 0.999, % mean recovery was found to be 100% and 100.5%, %RSD for repeatability was 0.2 and 0.4, %RSD for intermediate precision was 0.5 and 0.1 respectively. The precision study was precise, robust, and repeatable. LOD value was 2.95 and 3.04, and LOQ value was 9.87 and 10 respectively. Hence the suggested RP-HPLC method can be used for routine analysis of Telmisartan and Carvedilol API and Pharmaceutical dosage form.

5. References

[1] Dr. K. Nageswara Rao, Raghava Doonaboyina, R. Mahesh Babu, Analytical Method Development and Validation for the Simultaneous Estimation of Ceftolozane and Tazobactam in Its Bulk and Pharmaceutical Dosage Forms. Asian .J. Chem Pharm. Res., 2018, 6(2): 43-48.

- [2] Dr. K. Nageswara Rao, Raghava Doonaboyina, R.Hema, Method Development and Validation of Brinzolamide and Brimonidine in Its Bulk and Ophthalmic Dosage Form by Using RP-HPLC. Int. J. Chem, Pharm, Sci., 2018, 6(11): 306-312.
- [3] Dr. K. Nageswara Rao, Raghava Doonaboyina, S. Rajesh. Analytical Method Development and Validation for the Simultaneous Estimation of Empagliflozin and Linagliptin in Pharmaceutical Dosage Forms by RP-HPLC Method. Int. J. Chem, Pharm, Sci., 2018, 6(11): 313-318.
- [4] Dr. K. Nageswara Rao, Raghava Doonaboyina, Bhavani Analytical Method Development and Validation for the Simultaneous Estimation of Buprenorphine and Naloxone By RP- HPLC Method. Int. J. Chem, Pharm, Sci., 2018, 6(10): 279-284.
- [5] Dr. K. Nageswara Rao, Raghava Doonaboyina, M.Jayasri Simultaneous Estimation of Neutipotent and Palonesetron in Its Bulk and Pharmaceutical Dosage Form by RPHPLC Method. Int. J. Chem, Pharm, Sci., 2018, 6(10): 285-290.
- [6] Dr. K. Nageswara Rao, Raghava Doonaboyina, Hope Evangeline Novel RP-HPLC Method Development and Validation of Dasatinib and Lenvatinib in Bulk and Pharmaceutical Dosage Forms. Int. J. Curnt. Tren. Pharm, Res., Res., 2018, 6(2): 43-49.
- [7] Dr. K. Nageswara Rao, Raghava Doonaboyina, T. Naga Sirisha Devi Analytical Method Development and Validation for the Simultaneous Estimation of Darunavir and Cobicistat by RP-HPLC Method. Int. J. Curnt. Tren. Pharm, Res., Res., 2019, 6(2): 50- 55.
- [8] Tripathi K.D. Essential of Medical Pharmacology, 5th Edn, Jaypee Brothers Medical Publisher New Delhi. Pp: 515-516.